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Abstract 

An ini'estigatian of the aerodynamic characteristics of a 
family of ring tall strut-body coMfigurutions was conducted at 
Madi numbers from 0.80 to 4.5. Rings iwying from 1,25 to 
2.50 calibers in diameter and from 0.60 to 1.50 calibers in 
lengtli were tested. Tftey u ere tested at various longitudinal 
positions and uiffi internal expansion angles from 0 to 6 . 
I fie effect of c/iangingfrom circular section support struts to 
streamlined struts was also inrestigated. 

Tills report presents the zero-lift foredrag and base drag 
results and compares tliem, idiereuer possible, u;ith theoreti- 
cal estimates. 

Foreword 

The Aerodynamics Branch of the Adranced Systems 
laboratory is currently engaged In a supporting research 
program directed touard a reduction In missile base drag. 
The program is being conducted as a part of Supporting 
Research Project Base Drag Reduction, AMC Management 
Structure (ode No. 5221.]].148. 
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Section I. INTRODUCTION 

The Army's assigned combat tasks are tactical in nature and are 
cither ground based or ground directed. The tasks in general will be: 
(I) direct fire against personnel and vehicles, (2) local defense against 
air attacks, and (3) tactical bombardment.  Weapons designed to accomplish 
these tasks will trend toward short-range, high-speed missiles operating 
within the earth's lower atmosphere.  The performance and accuracy of 
missiles operating at high speeds within the earth's atmosphere are sig- 
nificantly degraded by drag forces. 

Methods are currently available for satisfactorily optimizing all 
of the major missile drag components with the exception of the drag of 
the body base region.  Since the base drag can be as high as 30 to 50 
percent of the total drag of a missile during unpowered phases, and as 
high as 30 to 70 percent during sustained power phases, one of the most 
promising means of improving Army missile performance through aerodynamics 
is by optimization or reduction of base drag. 

Three methods that appear promising for reducing base drag are: 
(1) favorable interference, (2) base bleed, and (3) optimizing afterbody/ 
rocket nozzle geometry.  Previous work performed on items (2) and (3) 
by the Aerodynamics Branch under the SR Project are reported in References 
1 through 4. This report and References 5 and 6 present the results of 
an investigation concerned with reduction of base drag through favorable 
interference. 

The design of a high speed missile is complicated by interaction 
between the various missile component flow fields.  However, the flow 
field interactions do provide an opportunity to improve lift, stability, 
and drag characteristics through favorable interference. One of the 
earliest concepts for using favorable interference to reduce drag was the 
Buscmann biplane which is discussed in Reference 7. Reference 7 shows 
that the wave drag of a two-dimensional, supersonic biplane, composed of 
two wings of finite thickness, can be reduced to that of a flat plate of 
zero thickness through proper geometrical considerations. A body-of- 
rcvolution concentric to a reflecting ring, analogous to the Buseman 
biplane, is discussed in References 8 and 9.  Interference effects have 
been successfully used to reduce the wave drag of wing-body configurations 
at transonic speeds by the "area-rule" method. All of the above are con- 
cerned with reduction of wave drag through favorable interference. An 
indication that flow field interactions may be used to reduce base drag 
is presented in Reference 10, which shows that the bow wave from one 
body impinging on the wake of a second body has a large effect on the 
base pressure of the second body. 

The need for a secondary flow field near the base of the body, which 
will induce the desired base pressure increment without an off-setting 
increase in wave drag, is'met by the flow field from the missile stabi- 
lizing surfaces. Although conventional tail surfaces may be used to 
create a favorable base pressure increment, Che interactions are local 
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around  the body circumference  and  the  net  results  are  small  unless   large 
tail  surfaces or a   large  number of small  tail  surfaces are used.     The 
flow  field  induced  by a  ring  type  stabilizing surface,   concentric   to  the 
body,   is more  suitable   for  realizing favorable   interference effects. 
However,   to realize  a  net  improvement using a  ring  tail,   the  ring  tall 
must  (a)  produce  the desired  stability contribution,   and  (b)   the  net 
change  in combined ring  tail wave and friction drag and body base drag 
must  be  favorable. 

Very  little   information  is available  on  the  static-longitudinal 
stability characteristics  of ring  tails.     Therefore,   a prerequisite  to 
a  study of ring   tails  as  a  device  to reduce  base drag  is an investigati 
to determine   the  useful  range  of ring geometrical  parameters  from a  sta- 
bility viewpoint.     That  range  of parameters  can  then be applied  to  the 
drag  reduction problem.     An experimental   test program has  been conducted 
by  the Aerodynamics Branch on a body of revolution with a  series  of ring 
tails  having diameters  from  1,25   to 2.50 calibers.     The  tests were 
conducted at Mach numbers   from 0.8  to  1.5   in  the   1-foot   transonic   tunnel, 
Arnold Engineering Development Center,  Tullahoma,   Tennessee,  and at Mach 
numbers  from  1,75   to 4.50  in  the Ballistic Research  Laboratories  Tunnel 
No.   1,  Aberdeen Proving Grounds,  Maryland.     Ring  tail  geometric parameters 
which varied during  the   tests were diameter,   chord,   internal expansion 
angle,   and  longitudinal  position on  the  fuselage. 

While  the primary purpose  of  the  tests was   to  investigate  the  sta- 
bility characteristics  of  ring  tails,  measurements were also made  of  the 
body base drag and  configuration  foredrag.     This  report presents   the wind 
tunnel   test measured values  of  the  foredrag and base  drag of  the various 
configurations and  compares   them with  theoretical  estimates. 

The  basic wind  tunnel  data  is  tabulated  in Reference  5. 



Section II. APPARATUS AND PROCEDURE 

The   tests were  conducted  in  the Aerodynamic Wind Tunnel,   Transonic 
(IT)   of  the  Propulsion Wind Tunnel Facility,  Arnold Engineering Develop- 
ment Center,   and  in Supersonic Wind Tunnel No.   1, Ballistic Research 
Laboratories,  Aberdeen Proving Grounds.     A detailed description of  these 
facilities  is  given  in References   11  and  12. 

The  test bodies are  1.15  inches  in diameter with a  four caliber 
ogival  nose  and a  total  length of  ten calibers as  shown  in Figure   1. 
The  ring tails,  which are described in Figure 2, are attached  to the 
bodies with either four round support posts as shown in Figure 2,  or 
with four faired support fins as shown in Figure 3.    Each ring tail can 
be   located  in several longitudinal positions relative  to the body.    A 
photograph of   the model installed in  the   transonic tunnel is presented 
in Figure  4,   and  in the supersonic  tunnel  in Figure 5.     The model was 
sting mounted  in  the  test section on a  six-component,  internal,   strain- 
gage  balance. 

A 0.25-inch band of #80 transition grit was  located 0.50 inch from o o the  nose apex.     In general  the angle  of attack range was  from -4     to 6   . 
The Reynolds  number during  the  test varied from 3 x  106   to 5 x  106 ,  based 
on model  length. 

The accuracy of the base drag coefficient and axial  foredrag 
coefficient varied from ±.008 and ±.012 respectively at M = 0.80  to 
±.005  respectively at M = 4.50. 
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Figure  1.    Body Configurations 



RING A B. C. D Z 

T   1 1500 1605 750 046 375 

T  2 1500 1657 1125 052 f*tf 

T  3 2000 2210 1500 080 750 

T  4 2000 2 140 1000 070 500 

T  5 2000 2080 600 060 300 

T 10 2500 2675 1250 092 625 

T II 2 500 2605 .750 080 375 

T 12 1250 1.425 1250 048 782 

T 13 1 250 1 381 937 048 623 

W   4°   INTERNAL  EXPANSION 

ALL DIMENSIONS IN CALIBERS 

Figure  2.    Ring Configurations 



RING A C.        D.        I. 

T  7 2 000   1.000     070    500 

TI4 1316      937     048    612 

(b) 0° INTERNAL EXPANSION 

2 2l(oi*) 

RING T8 

(c)   6* INTERNAL  EXPANSION 

Figure 2    (Concluded) 
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Figure 3.  Support Fin Configurations 



Figure 4. Model Installation - Transonic Tunnel 
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Figure 5.     Model  Installation - Supersonic Tunnel 



Section III.  RESULTS AND DISCUSSION 

The purpose  of  this analysis  is  to  investigate  the  ring  tail  drag 
and  the  effects  of  ring  tails  on body base drag.    The variation  of body 
alone  base  drag and body fore  drag with Mach number  is  shown  in  Figure 
6  and  7,   respectively.     This variation  of body base  drag with Mach number 
for various  ring  tail-strut-body configurations  is  shown  in Figure 8, 
The   increment  in zero  lift drag  (excluding base  drag)  caused by   the  ring 
tail   and  support  strut  is presented  in Figure   9. 

I.    Base Drag 

To enable the effect of the ring tail on base drag to be seen 
easily, the body alone base drag estimate (from Reference 13) is shown 
in Figure 8. As the model sting support is approximately half a caliber 
in diameter, it will affect the measured base pressures, especially at 
the transonic Mach numbers.  However, it is useful to present the results 
since they should show the base pressure trends correctly. 

Both the ring and the support strut can have significant effects on 
the base drag.  The diverging inside surface of the rings (except T7 and 
T  ) causes an expansion fan from the ring leading edgp.  At low super- 

sonic speeds this fan intersects the body, causing a reduction in Liu 
static pressure and an increase in the local Mach number near the body 
base region.  This results in reduced base pressure, i.e., increased base 
drag. However, as the free stream Mach number is increased, the effect 
of the expansion fan is felt further downstream and eventually will have 
no adverse effect on the base drag. The maximum possible effect of the 
expansion fan caused by the diverging inside ring surface has been esti- 
mated by assuming that the local static pressure and Mach number just 
upstream of the base are the same as the conditions behind the expansion 
fan. The resulting base drag estimate is shown in Figure 8. Ring tails 
T7 and T14, which have zero inside surface slope, should not be affected 
by ring expansion fan. 

Examination of the test results in Figure 8 shows that the "maximum 
expansion" estimate generally sets a maximum value of the base urag 
coefficient. Also at the higher test Mach numbers, the test results tend 
to be nearer the body alone estimate than the "maximum expansion" estimate 
showing the diminishing effect of the ring expansion fan with Increasing 
Mach number. The large variations in base drag measured at transonic 
Mach numbers is probably due to multiple reflections of the expansion fan 
between the body and ring, and also tunnel and support sting interference 
effects. 

The support struts induce a pressure field which affects the condi- 
tions just upstream of the base,and the base pressure is critically affcett 
by these conditions.  At the higher supersonic free stream Mach numbers, 
the circular support struts have a detached shock wave around them and 
there is a high pressure field behind this shock wave. This will cause 



increased base pressure and so reduced base drag.  At low supersonic Mach 
numbers, the pressure rise across the detached shock wave is small and 
parts of the flow field behind this shock could be below the free stream 
static pressure (e.g., circular strut base flow area).  This will cause 
increased base drag. 

The base drag of ring tails T7 and Tl4 should only be affected by 
the support struts.  The test results for T7 indicate considerable bene- 
fLcial interference from M = 1.5 to 4.5; however, T  only shows a small 
reduction in base drag at M = 2,5 and M = 3.0.  This is probably because 
of the small ring diameter relative to the body diameter.  The gap between 
ring and body is almost two-thirds filled with boundary layer and thus 
makes the results somewhat inconclusive. 

Since these tests were primarily to check the stability characteris- 
tics of ring tails, further tests are planned to provide better under- 
standing of the flow phenomenon and better evaluation cf the effects of 
interference on base drag to be made, 

2.    Foredrag 

Values of C  have been estimated, by the methods in the appendix, 
F 

over a Mach number range from 1.5 to 4.0. The broken line in Figure 9 is 
the C  ignoring strut-ring beneficial interference, and the solid line 

is the C   taking this interference into account.  It is seen that the 

estimated values agree well with the test results and so the methods sug- 
gested in the appendix should be satisfactory at least for initial design 
drag estimates at supersonic speeds for ring tail-strut-body combinations. 

The one configuration with poor agreement between test results and 
estimated values is B T (Figure 9). This is probably because of inter- 
'erence between the ring tail and boattailed afterbody of B , 



Section IV.  CONCLUSIONS 

An investigation of the aerodynamic characteristics has been made 
of a  family of ring tail-strut-body configurations at Mach numbers  of 
0.80  to 4.5*    Results of an analysis of the zero-lift fore drag and body 
base drag  lead to the  following conclusions: 

1. Computation of ring strut wave drag at supersonic speeds 
using the method presented is adequate for engineering estimates« 

2. Ring tails and their  support struts have significant effects 
on base drag.    Generally,  the diverging ring strut configurations   tend 
to increase body base drag while the nondiverging ring strut configura- 
tions decrease body base drag (except at transonic speeds). 

10 
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Appendix 

ESTIMATE OF ZERO-LIFT DRAG COEFFICIENT  (EXCLUDING BASE DRAG) 
FOR RING TAIL-STRUT-BODY COMBINATIONS AT  SUPERSONIC  MACH NUMBERS 

The various components  of  the drag are as follows: 

(1) Body skin friction drag. 
(2) Body wave drag. 
(3) Ring tail skin friction drag, 
(4) Ring tail wave drag. 
(5) Support strut skin friction drag. 
(6) Support  strut wave drag. 
(7) Strut-ring tail interference drag. 
(8) Strut-body interference drag. 

Of  these eight components,   items  1,  2,   3, 5 and 6 can be estimated 
by  the usual routine methods.    The estimate  of  the ring tail wave drag 
(item ^) was obtained by multiplying the two-dimensional  section wave drag 
by the circumference.    The  section wave drag can be  obtained by shock- 
expansion or other methods.    This  is probably accurate  if the expansion 
wave  from the ring  leading edge does not impinge on  the  inner surface of 
the  ring after reflection from the body.    For a Mach number range of  1.5 
to 4.0,   only the  smaller diameter rings at  their forward positions and 
at   the  lower free  stream Mach numbers violate  this condition, but the 
estimates  should still be acceptable for these conditions. 

This  leaves items  7 and 8,   the  interference drag, which will be 
negative due  to the pressure  field of the support strut acting over  the 
forward  facing inner ring surface and the boattail afterbody of body B   . 
To estimate  this interference drag accurately,  one needs  to know the 
pressure  field around  the  strut.    Since a., exact calculation of  the pres- 
sure  field would involve very  laborious and complicated computations,  and 
as   the  interference drag is only a small percentage  of  the  total drag,  an 
approximate method would be used. 

For  the circular  section struts,  the  shape of  the detached shock wave 
for a   two-dimensional circular cylinder was calculated using the methods 
suggested in Reference   14.    From the inclination of   the  shock wave at any 
point,   the ratio of the  static pressure just behind  the  shock to the  free 
stream static pressure can be calculated.    Now downstream of  the  shock, 
the  static pressure will decay exponentially to the  free  stream static 
pressure.    The rate of decay is, very approximately,   such that in a  length 
of  six  strut diameters,   the  static pressure drops halfway to the free 
stream value.    In the present case,   the ring tail trailing edge is between 
4,7 and  10,8 strut diameters downstream of  the  strut ring intersection. 
To ease  the computation problems,   the pressure was assumed constant down- 
stream of  the  shock and  the  final resultant force on  the ring was halved 
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to allow for the pressure decay. The interference drag on the boattailed 
afterbody of body B8 can be dealt with in a similar manner. 

For the double wedge section strut, shock-expansion methods were used 
to calculate the pressure field. In this case, the forward force on the 
fin due to the high pressure caused by the front wedge is nearly cancelled 
out by the low pressure caused by the rear wedge. The resulting interfer- 
ence drag is negligible. 

Figure 10 shows the force induced on a ring fin by a circular strut 
for various Mach numbers and for various lengths of the fin trailing edge 
behind the strut ring intersection. 

400 

300 

200 

100 

Figure 10.  Fin-Strut Interference Drag Chart 
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